静态网页设计实训报告摘要,整站seo排名公司,南宁市保障住房建设管理服务中心网站,深圳app开发一、研究背景和意义
随着汽车保有量的不断增加#xff0c;交通事故已成为全球范围内的重大公共安全问题。每年因交通事故造成的人员伤亡和财产损失给社会带来了巨大的负担。为了提高驾驶安全#xff0c;减少交通事故的发生#xff0c;许多研究致力于探索影响驾驶安全的因素…一、研究背景和意义
随着汽车保有量的不断增加交通事故已成为全球范围内的重大公共安全问题。每年因交通事故造成的人员伤亡和财产损失给社会带来了巨大的负担。为了提高驾驶安全减少交通事故的发生许多研究致力于探索影响驾驶安全的因素并开发相应的预测模型。
机器学习作为一种强大的数据分析工具在驾驶安全领域得到了广泛的应用。通过对大量驾驶安全数据的学习和分析机器学习算法可以自动发现数据中的模式和规律并建立预测模型以预测驾驶员的行为和事故风险。
研究意义
提高驾驶安全通过预测驾驶员的行为和事故风险提前采取相应的措施如发出警告、调整驾驶策略等可以有效地减少交通事故的发生提高驾驶安全。优化交通管理驾驶安全预测模型可以为交通管理部门提供决策支持帮助他们优化交通流量、改善道路设施、加强交通安全宣传等从而提高整个交通系统的安全性和效率。推动智能驾驶技术的发展驾驶安全预测是智能驾驶技术的重要组成部分。通过对驾驶安全数据的分析和预测可以为智能驾驶系统提供实时的驾驶建议和决策支持推动智能驾驶技术的发展和应用。降低保险成本保险公司可以利用驾驶安全预测模型来评估驾驶员的风险水平从而制定个性化的保险费率降低保险成本。促进社会和谐发展交通事故不仅给个人和家庭带来了巨大的痛苦和损失也对社会的和谐发展造成了负面影响。通过提高驾驶安全减少交通事故的发生可以促进社会的和谐发展。
综上所述使用机器学习方法对驾驶安全数据进行预测具有重要的研究背景和意义。它不仅可以提高驾驶安全减少交通事故的发生还可以为交通管理、智能驾驶技术、保险等领域提供有益的支持促进社会的和谐发展。
二、实证分析
首先读取数据集
数据和完整代码
#####导入基础的数据处理包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset
df pd.read_csv(train.csv)
查看数据集前五行
###查看数据
df.head() 可以发现每个样本有59个特征
接下来查看数据类型
df.shape 发现数据量为595212*59数据量挺大这可能对最终的模型计算产生一些阻碍。接下来查看数据类型 接下来进行数据预处理对其他行列进行处理首先若是一行全为空值就删除
###对列进列进行处理。如果有一列的值全部一样也就是取值唯一的特征变量就可以删除了因为每个样本没啥区别对模型就没啥用
#取值唯一的变量删除
for col in df.columns:if len(df[col].value_counts())1:print(col)df.drop(col,axis1,inplaceTrue)
#缺失到一定比例就删除
miss_ratio0.15
for col in df.columns:if df[col].isnull().sum()df.shape[0]*miss_ratio:print(col)df.drop(col,axis1,inplaceTrue) 统计性描述 观察缺失值可视化
import missingno as msno
msno.matrix(df) grouped df.groupby(ps_calc_20_bin).mean()
grouped 接下来画出特征的直方图
df.hist(bins50, figsize(20,15))
plt.show() 查看特征变量的箱线图分布 接下来采用了斯皮尔曼相关系数计算画出热力图。在训练集上带上了y
corr plt.subplots(figsize (20,16),dpi128)
corr sns.heatmap(df.corr(methodspearman),annotTrue,squareTrue) 响应变量分布 由于数据集样本不平衡要处理一下
no_target df_copy.drop(index target.index)
no_target no_target.sample(n 21694)
balanced pd.concat([no_target, target])
balanced[target].value_counts()balanced 平衡了
可视化响应变量分布 开始机器学习 准备模型
# Split the dataset into training and test sets
X df1.drop([id], axis1) ####我们这里target已经没有了
X_train, X_test, y_train, y_test train_test_split(X, y, test_size0.2, random_state42)
from sklearn.neighbors import KNeighborsClassifier
model KNeighborsClassifier(n_neighbors10)
model.fit(X_train_s, y_train)
model.score(X_test_s, y_test) from sklearn.ensemble import RandomForestClassifier
model RandomForestClassifier(n_estimators1000, max_featuressqrt,random_state10)
model.fit(X_train_s, y_train)
model.score(X_test_s, y_test)
from sklearn.ensemble import AdaBoostClassifier
model0 AdaBoostClassifier(n_estimators100,random_state77)
model0.fit(X_train_s, y_train)
model0.score(X_test_s, y_test)
到此完成了模型的预测和比较。。。
三、小结
在这个案例中我运用了机器学习的方法包括KNN自适应提升和随机森林等等对驾驶安全进行了预测。然而由于数据量很 大导致样本不平衡最终结果很一般甚至出现了过拟合的情况。在解决这个问题的过程中我采用了以下的方法 数据清洗和特征选择 在机器学习的过程中数据质量和特征选择都是非常重要的。在本案例中我通过数据清洗和特征选择的方式剔除了一些噪声 和冗余的数据以及一些无关或者不必要的特征。这可以提高数据的质量提高模型的准确性。 数据预处理 在处理数据时我注意到数据量很大且样本不平衡这对于机器学习算法的效果产生了很大的影响。因此我采用了一些数据 预处理的方法包括数据平衡和数据规范化。数据平衡可以通过欠采样和过采样的方式来实现。而数据规范化则可以通过归一化 和标准化等方式来实现以确保不同特征的数值范围一致。
模型选择和调优在本案例中我尝试了多种机器学习算法包括KNN自适应提升和随机森林等等。然而由于数据量很大且样本不平衡模型 表现并不理想存在过拟合的情况。因此后续可以采用模型调优的方式来提高模型的准确性和泛化能力。 结果分析和优化 在完成机器学习任务后我对结果进行了分析和优化。例如我发现在预测少数类别时模型表现并不理想因此需要进一步加强 对少数类别的学习。 综上所述在本案例中我通过数据清洗和特征选择、数据预处理、模型选择和调优以及结果分析和优化等方法一定程度上完 成了机器学习的过程后续的对于样本处理以及过拟合的问题还需进一步研究。