当前位置: 首页 > news >正文

工信部网站备案用户名心理网站建设策划书

工信部网站备案用户名,心理网站建设策划书,长沙网络推广软件,怎样创建网站发招聘信息文章目录 abstract引言 一般的微分方程常微分方程微分方程的解隐式解通解和特解初始条件初值问题微分方程的积分曲线 线性微分方程一阶线性微分方程一阶齐次和非齐次线性微分方程一阶齐次线性微分方程的解一阶非齐次线性微分方程的解 abstract AM微分方程相关概念线性微分方程… 文章目录 abstract引言 一般的微分方程常微分方程微分方程的解隐式解通解和特解初始条件初值问题微分方程的积分曲线 线性微分方程一阶线性微分方程一阶齐次和非齐次线性微分方程一阶齐次线性微分方程的解一阶非齐次线性微分方程的解 abstract AM微分方程相关概念线性微分方程一阶线性微分方程的通解 引言 经验表明,获得微分方程的一般性数学理论是困难的 有少数类型的微分方程,比如线性微分方程具有一般的求解理论还有一些一阶的简单的微分方程类型 一般的微分方程 含有未知函数,未知函数的导数与自变量之间的关系的方程,称为微分方程; 未知函数导数的最高阶数称为该微分方程的阶 方程 F ( x , y , y ′ , ⋯ , y n ) 0 F(x,y,y,\cdots,y^{n})0 F(x,y,y′,⋯,yn)0(1)或方程 y ( n ) y^{(n)} y(n) f ( x , y , y ′ , ⋯ , y ( n − 1 ) ) f(x,y,y,\cdots,y^{(n-1)}) f(x,y,y′,⋯,y(n−1))(1-1)成为 n n n阶微分方程(形式(1-1)是一种常见的微分方程形式) 其中 x , y , y ′ ⋯ , y ( n − 1 ) x,y,y\cdots,y^{(n-1)} x,y,y′⋯,y(n−1)可以没有,但必须有最高阶导数 y ( n ) y^{(n)} y(n) 当 n 1 n1 n1时,方程(1)称为一阶微分方程 常微分方程 未知函数是一元函数的微分方程称为常微分方程 微分方程的解 设 y ϕ ( x ) y\phi(x) yϕ(x)在区间 I ( a , b ) I(a,b) I(a,b)上连续且 n n n阶可导,使得 F ( x , ϕ ( x ) , ϕ ′ ( x ) , ⋯ , ϕ ( n ) ( x ) ) 0 F(x,\phi(x),\phi(x),\cdots,\phi^{(n)}(x))0 F(x,ϕ(x),ϕ′(x),⋯,ϕ(n)(x))0,(2)即式(1)恒成立,则称 y ϕ ( x ) y\phi(x) yϕ(x)为该微分方程在区间 I I I上的一个解 隐式解 若关系 F ( x , y ) 0 F(x,y)0 F(x,y)0(3)确定的隐函数 y ϕ ( x ) y\phi(x) yϕ(x)是(1)的解,则称(3)是(1)的隐式解例如: x 2 y 2 1 x^2y^21 x2y21(4)是一阶微分方程 y ′ − x y y-\frac{x}{y} y′−yx​(4-1)的隐式解 对(4)求导, 2 x 2 y y ′ 0 2x2yy0 2x2yy′0,变形得(4-1)式 通解和特解 若含有 n n n个独立任意常数的函数 y ϕ ( x , C 1 , ⋯ , C n ) y\phi(x,C_1,\cdots,C_n) yϕ(x,C1​,⋯,Cn​), x ∈ I x\in{I} x∈I(5)是 n n n阶微分方程(1)的解,则称(5)是(1)的通解不含任意常数的解称为特解详见函数线性相关性 初始条件 关系式: y ( i ) ( x 0 ) y 0 ( i ) y^{(i)}(x_0)y_0^{(i)} y(i)(x0​)y0(i)​, ( i 0 , 1 , 2 , ⋯ , n ) (i0,1,2,\cdots,n) (i0,1,2,⋯,n)称为 n n n阶微分方程的初始条件 其中 y 0 i y_{0}^{i} y0i​, ( i 0 , 1 , 2 , ⋯ , n ) (i0,1,2,\cdots,n) (i0,1,2,⋯,n)为 n n n个给定的数 初值问题 一般地,由初始条件确定通解中的任意常数,就得到相应的一个特解 上述方式确定特解的问题称为初值问题 利用初始条件定义特解:微分方程中,满足初始条件的解称为特解 微分方程的积分曲线 微分方程的解(函数)的图形是一条曲线,称为微分方程的积分曲线一阶微分方程的初值问题 y ′ f ( x , y ) yf(x,y) y′f(x,y); y ′ ∣ x x 0 y 0 y|_{xx_0}y_0 y′∣xx0​​y0​的几何意义,就是求通过点 ( x 0 , y 0 ) (x_0,y_0) (x0​,y0​)的那条积分曲线 线性微分方程 方程 ∑ i 0 n a i ( x ) y ( i ) \sum_{i0}^{n}a_{i}(x)y^{(i)} ∑i0n​ai​(x)y(i) f ( x ) f(x) f(x),(1);式(1)展开写为: y ( n ) a 1 ( x ) y ( n − 1 ) ⋯ a n − 1 ( x ) y ′ a n ( x ) y y^{(n)}a_1(x)y^{(n-1)}\cdotsa_{n-1}(x)y^{}a_n(x)y y(n)a1​(x)y(n−1)⋯an−1​(x)y′an​(x)y f ( x ) f(x) f(x);该方程称为** n n n阶线性微分方程** 若式(1)中 f ( x ) 0 f(x)0 f(x)0,此时方程(1)作 ∑ i 1 n a i ( x ) y ( i ) 0 \sum_{i1}^{n}a_{i}(x)y^{(i)}0 ∑i1n​ai​(x)y(i)0(2),称为** n n n阶线性齐次微分方程**,并且称(2)是(1)对应的齐次方程 若式(1)中 f ( x ) ≠ 0 f(x)\neq{0} f(x)0,其中系数 a i ( x ) a_i(x) ai​(x)是已知函数,并假设 a i ( x ) a_i(x) ai​(x), f ( x ) f(x) f(x)在某个区间 ( a , b ) (a,b) (a,b)内连续,则式(1)为** n n n阶线性非齐次微分方程**, f ( x ) f(x) f(x)称为自由项 一阶线性微分方程 形如 d y d x P ( x ) y Q ( x ) \frac{\mathrm{d}y}{\mathrm{d}x}P(x)yQ(x) dxdy​P(x)yQ(x)(1)的方程称为一阶线性微分方程 其通解为 y C e − ∫ P ( x ) d x e − ∫ P ( x ) d x ⋅ ∫ Q ( x ) e ∫ P ( x ) d x d x yCe^{-\int{P(x)}\mathrm{d}x}{e^{-\int{P(x)}\mathrm{d}x}}\cdot\int{Q(x)e^{\int{P(x)\mathrm{d}x}}\mathrm{d}x} yCe−∫P(x)dxe−∫P(x)dx⋅∫Q(x)e∫P(x)dxdx 另一种表示方式: y exp ⁡ ( − ∫ P ( x ) d x ) ( ∫ [ Q ( x ) exp ⁡ ( ∫ P ( x ) d x ) d x ] C ) y\exp\left(-\int{P(x)\mathrm{d}x}\right) \left(\int{[Q(x)}\exp\left(\int{P(x)\;\mathrm{d}x}\right)\;\mathrm{d}x]C \right) yexp(−∫P(x)dx)(∫[Q(x)exp(∫P(x)dx)dx]C) 一阶齐次和非齐次线性微分方程 若 Q ( x ) ≡ 0 Q(x)\equiv{0} Q(x)≡0,则称 d y d x P ( x ) y 0 \frac{\mathrm{d}y}{\mathrm{d}x}P(x)y0 dxdy​P(x)y0(2)为对应于(1)的齐次线性方程若 Q ( x ) ≢ 0 Q(x)\not\equiv{0} Q(x)≡0(函数 Q ( x ) Q(x) Q(x)不总是取 0 0 0,这不同于函数 Q ( x ) ≠ 0 Q(x)\neq{0} Q(x)0(不取0)),则称 d y d x P ( x ) y Q ( x ) ≢ 0 \frac{\mathrm{d}y}{\mathrm{d}x}P(x)yQ(x)\not\equiv{0} dxdy​P(x)yQ(x)≡0(3)为非齐次线性方程 一阶齐次线性微分方程的解 方程(2)是可分离变量的: d y y \frac{\mathrm{d}y}{y} ydy​ − P ( x ) d x -P(x)\mathrm{d}x −P(x)dx(4),两边积分,得 ln ⁡ ∣ y ∣ \ln|y| ln∣y∣ − ∫ P ( x ) d x C 1 -\int{P(x)\mathrm{d}x}C_1 −∫P(x)dxC1​(4-1)两边取指数: ∣ y ∣ |y| ∣y∣ e − ∫ P ( x ) d x C 1 e^{-\int{P(x)\mathrm{d}x}C_1} e−∫P(x)dxC1​ e − ∫ P ( x ) d x ⋅ e C 1 e^{-\int{P(x)\mathrm{d}x}}\cdot{e^{C_1}} e−∫P(x)dx⋅eC1​(5),为了便于书写复杂指数,使用 exp ⁡ x \exp{x} expx表示 e x e^{x} ex,则式(5)可以表示为 ∣ y ∣ |y| ∣y∣ exp ⁡ ( − ∫ P ( x ) d x C 1 ) \exp{(-\int{P(x)}\mathrm{d}xC_1)} exp(−∫P(x)dxC1​) exp ⁡ ( C 1 ) ⋅ exp ⁡ ( − ∫ P ( x ) d x ) \exp(C_1)\cdot\exp{(-\int{P(x)}\mathrm{d}x)} exp(C1​)⋅exp(−∫P(x)dx) y ± exp ⁡ ( C 1 ) ⋅ exp ⁡ ( − ∫ P ( x ) d x ) y\pm{\exp(C_1)\cdot\exp{(-\int{P(x)}\mathrm{d}x)}} y±exp(C1​)⋅exp(−∫P(x)dx) C exp ⁡ ( − ∫ P ( x ) d x ) C\exp{(-\int{P(x)}\mathrm{d}x)} Cexp(−∫P(x)dx)(6),其中 C ± exp ⁡ ( C 1 ) C\pm{\exp(C_1)} C±exp(C1​)式(6)就是方程(3)的通解 一阶非齐次线性微分方程的解 显然方程(2)是方程(1)的特殊情况,两者存在一定的联系对方程(3)进行变形: d y y \mathrm{d}y\over{y} ydy​ ( − P ( x ) 1 y Q ( x ) ) d x (-P(x)\frac{1}{y}Q(x))\mathrm{d}x (−P(x)y1​Q(x))dx(7),两边积分 ln ⁡ ∣ y ∣ \ln|y| ln∣y∣ ∫ ( − P ( x ) 1 y Q ( x ) ) d x C 1 \int{(-P(x)\frac{1}{y}Q(x))\mathrm{d}x}C_1 ∫(−P(x)y1​Q(x))dxC1​ ∫ ( − P ( x ) 1 y Q ( x ) ) d x ln ⁡ ∣ C ∣ \int{(-P(x)\frac{1}{y}Q(x))\mathrm{d}x}\ln{|C|} ∫(−P(x)y1​Q(x))dxln∣C∣(7-1),其中 C 1 ln ⁡ ∣ C ∣ C_1\ln{|C|} C1​ln∣C∣, C 1 C_1 C1​可以取任何常数,但为了得到 y y y,我们要对(7-1)两边取指数, exp ⁡ ln ⁡ ∣ C ∣ \exp{\ln|C|} expln∣C∣ ∣ C ∣ |C| ∣C∣,是一个简单的值,继续展开(7-1), − ∫ P ( x ) d x ∫ 1 y Q ( x ) d x ln ⁡ ∣ C ∣ -\int{P(x)}\mathrm{d}x\int{\frac{1}{y}Q(x)\mathrm{d}x}\ln{|C|} −∫P(x)dx∫y1​Q(x)dxln∣C∣(7-2)取指数, ∣ y ∣ |y| ∣y∣ exp ⁡ ( − ∫ P ( x ) d x ∫ 1 y Q ( x ) d x ln ⁡ ∣ C ∣ ) \exp{(-\int{P(x)}\mathrm{d}x\int{\frac{1}{y}Q(x)\mathrm{d}x}\ln{|C|})} exp(−∫P(x)dx∫y1​Q(x)dxln∣C∣)(8),即 y ± ∣ C ∣ exp ⁡ ( − ∫ P ( x ) d x ) exp ⁡ ( ∫ 1 y Q ( x ) d x ) y\pm{|C|\exp(-\int{P(x)\mathrm{d}x})}\exp{(\int{\frac{1}{y}Q(x)\mathrm{d}x})} y±∣C∣exp(−∫P(x)dx)exp(∫y1​Q(x)dx) C exp ⁡ ( − ∫ P ( x ) d x ) exp ⁡ ( ∫ 1 y Q ( x ) d x ) C{\exp(-\int{P(x)\mathrm{d}x})}\exp{(\int{\frac{1}{y}Q(x)\mathrm{d}x})} Cexp(−∫P(x)dx)exp(∫y1​Q(x)dx)(9) 其中 C ± ∣ C ∣ C\pm{|C|} C±∣C∣ C exp ⁡ ( − ∫ P ( x ) d x ) C{\exp(-\int{P(x)\mathrm{d}x})} Cexp(−∫P(x)dx),这就是式(6),即式(9)包含一阶齐次线性微分方程的通解记 T exp ⁡ ( ∫ 1 y Q ( x ) d x ) T\exp{(\int{\frac{1}{y}Q(x)\mathrm{d}x})} Texp(∫y1​Q(x)dx) T T T是关于 x x x的函数( y y y是关于 x x x的一元函数,所以 T T T是 x x x的函数,可以表示为 T ( x ) T(x) T(x)), 式(9)也是关于 x x x的函数,但其表达式包含 y y y,下面的工作是化去式等号右边的 y y y,使之仅含有已知的关于 x x x的函数式 因此,比较式(9),(6),利用常数变易法,将方程(6)中的 C C C变易为 x x x的待定函数 C ( x ) C(x) C(x),使之满足方程(1),从而求出 C ( x ) C(x) C(x)(其表示的是 C T ( x ) CT(x) CT(x) 令 y C ( x ) exp ⁡ ( − ∫ P ( x ) d x ) yC(x)\exp{(-\int{P(x)}\mathrm{d}x)} yC(x)exp(−∫P(x)dx);(10),对其两边求导 d y d x \frac{\mathrm{d}y}{\mathrm{d}x} dxdy​ C ′ ( x ) exp ⁡ ( − ∫ P ( x ) d x ) C(x)\exp{(-\int{P(x)}\mathrm{d}x)} C′(x)exp(−∫P(x)dx) C ( x ) exp ⁡ ( − ∫ P ( x ) d x ) ( − P ( x ) ) C(x)\exp{(-\int{P(x)}\mathrm{d}x)}(-P(x)) C(x)exp(−∫P(x)dx)(−P(x)) C ′ ( x ) exp ⁡ ( − ∫ P ( x ) d x ) C(x)\exp{(-\int{P(x)}\mathrm{d}x)} C′(x)exp(−∫P(x)dx)- C ( x ) P ( x ) exp ⁡ ( − ∫ P ( x ) d x ) ) C(x)P(x)\exp{(-\int{P(x)}\mathrm{d}x)}) C(x)P(x)exp(−∫P(x)dx))(11) 将(10),(11)代入方程(1),得 C ′ ( x ) exp ⁡ ( − ∫ P ( x ) d x ) C(x)\exp{(-\int{P(x)}\mathrm{d}x)} C′(x)exp(−∫P(x)dx)- C ( x ) P ( x ) exp ⁡ ( − ∫ P ( x ) d x ) ) C(x)P(x)\exp{(-\int{P(x)}\mathrm{d}x)}) C(x)P(x)exp(−∫P(x)dx)) P ( x ) C ( x ) exp ⁡ ( − ∫ P ( x ) d x ) P(x)C(x)\exp{(-\int{P(x)}\mathrm{d}x)} P(x)C(x)exp(−∫P(x)dx) Q ( x ) Q(x) Q(x);即得 C ′ ( x ) exp ⁡ ( − ∫ P ( x ) d x ) C(x)\exp{(-\int{P(x)}\mathrm{d}x)} C′(x)exp(−∫P(x)dx) Q ( x ) Q(x) Q(x),(11-1),整理可得 C ′ ( x ) C(x) C′(x) Q ( x ) exp ⁡ ( ∫ ( P ( x ) d x ) ) Q(x)\exp{(\int(P(x)\mathrm{d}x))} Q(x)exp(∫(P(x)dx))(11-2),两边积分,就求得函数 C ( x ) C(x) C(x) ∫ [ Q ( x ) exp ⁡ ( ∫ ( P ( x ) d x ) ) ] d x C \int{[Q(x)\exp{(\int(P(x)\mathrm{d}x))}]\mathrm{d}x}C ∫[Q(x)exp(∫(P(x)dx))]dxC(12)将式(12)代入到(10),得方程(3)的通解: y [ ∫ [ Q ( x ) exp ⁡ ( ∫ ( P ( x ) d x ) ) ] d x C ] y[\int{[Q(x)\exp{(\int(P(x)\mathrm{d}x))}]\mathrm{d}x} C] y[∫[Q(x)exp(∫(P(x)dx))]dxC] ⋅ \cdot ⋅ [ exp ⁡ ( − ∫ P ( x ) d x ) ] [\exp{(-\int{P(x)}\mathrm{d}x)]} [exp(−∫P(x)dx)](13),习惯上把指数式放在前面,即 y y y [ exp ⁡ ( − ∫ P ( x ) d x ) ] [\exp{(-\int{P(x)}\mathrm{d}x)]} [exp(−∫P(x)dx)] ⋅ \cdot ⋅ [ ∫ [ Q ( x ) exp ⁡ ( ∫ ( P ( x ) d x ) ) ] d x C ] [\int{[Q(x)\exp{(\int(P(x)\mathrm{d}x))}]\mathrm{d}x} C] [∫[Q(x)exp(∫(P(x)dx))]dxC](13-1),或者展开成两项和: y y y C [ exp ⁡ ( − ∫ P ( x ) d x ) ] C[\exp{(-\int{P(x)}\mathrm{d}x)]} C[exp(−∫P(x)dx)] [ exp ⁡ ( − ∫ P ( x ) d x ) ] [\exp{(-\int{P(x)}\mathrm{d}x)]} [exp(−∫P(x)dx)] [ ∫ [ Q ( x ) exp ⁡ ( ∫ ( P ( x ) d x ) ) ] d x ] [\int{[Q(x)\exp{(\int(P(x)\mathrm{d}x))}]\mathrm{d}x}] [∫[Q(x)exp(∫(P(x)dx))]dx](14)式(14)中第一项(包含任意常数)就是齐次方程(2)的解,第二项(不包含任意常数)是非齐次方程(3)的一个特解 总之,一阶非齐次线性微分方程的通解等于对应的齐次方程的通解加上非齐次方程的一个特解之和;这一点和线性代数中非齐次线性方程组解的结构结论相仿
http://www.yingshimen.cn/news/51976/

相关文章:

  • 企业网站百度认证传奇网页游戏开服
  • php做网站图集外包网站开发安全吗
  • 制作一个营销型网站wordpress多用户主题
  • 做的公司网站怎么没了网站营销成功的案例
  • 网站缩略图尺寸山西省旅游网站建设分析
  • 濮阳建站公司哪个好做网站什么配置够用
  • 常德网站建设网站优化wordpress设置撰写
  • 网站建设毕业设计开题报告wordpress php5.4
  • 教做奥数的网站如何自己建设淘宝网站
  • 找人做网站要准备什么企业展厅装修设计
  • 深圳精美网站设计云南有哪些城市
  • 手机图片网站 模版在网站做登记表备案 如果修改
  • 淘客网站怎么做排名网站建设网上售票系统
  • 北京网站建设的公司seo排名优化培训网站
  • 有网站模板怎么建站京东联盟新手没有网站怎么做推广
  • 肥乡专业做网站英语网站源码
  • 网站运作方式阿里云建站费用
  • 上海平台网站建设公响应式网站做mip
  • 手机网站大全网站定制开发多久时间
  • 公司名称变更网站备案怎么处理wordpress 4.7.2 更新
  • 关于建设门户网站的请示官方网站链接如何做
  • 东莞做网站的公司哪家最好网络信息科技有限公司
  • 长沙网站建设 芙蓉区厦门网站推广费用
  • 制作网站免费建站北京网站建站推广
  • 永济微网站建设费用.net网站服务器
  • 化隆县公司网站建设wordpress撰写
  • 网站开发 开票买了个域名 如何自己做网站
  • 广西建设厅网站wordpress很卡
  • 北海市住房和城乡建设局网站114黄页的特点
  • 购物app大全seo诊断晨阳